

⇒Laws of Monitoring Sea Level and Climate Change:

Accuracy	In scientific and monitoring data we produce and evaluate.	Science
Accuracy	Information presented to the Public for understanding effects of sea level rise to their lives.	People
Accuracy	In helping make the right Decisions, and put into action the right Policies.	Future

⇒ Sea-Level Rise and Concerns to Society

Even small amounts in sea-level rise can cause devastating effects:

- Sea-level rises faster at present than in the last 2000 years.
- People living on low-lying lands may abandon or relocate.
- Islands may be lost.
- Cause destructive erosion on coasts.
- Contaminate faster aquifers and water resources with sea water.
- Contaminate agriculture and productive soils.
- Cause hurricane surges to become powerful, higher, with frequent flooding of vast coastal areas.
- Coastal flooding destroys wildlife habitats (birds, fish, animals, vegetation, etc.).
- For every 30 cm of sea level rise coastlines move inland by 30-100 m on average.

Why Need Establish FRM?

Because we need to monitor Oceans, Inland Waters, Polar Regions and climate change with satellite altimetry in a way that is:

- Accurate and Reliable,
- Objective,
- Homogenous and continuous,
- Independent of procedures, Cal/Val locations, settings, and
- For many years to come (at least 20 years).

Because it is appropriate time to:

- Build upon commonly adopted procedures, protocols and uncertainty for Cal/Val.
- Provide control and checks for monitoring altimeter degradation as fast as possible.
- Connect one altimetry mission with another, seamlessly and smoothly.
- Adopt a stable framework for international and interdisciplinary cooperation.
- Allow data integration between different scientific fields and disciplines,
- Set standards for measurements and results between various Cal/Val facilities.
- Ensure Cal/Val procedures, results are well documented and traceable to SI units.
- Provide transparent protocols and best practices for establishing new Cal/Val sites.
- Dissipate responsibility to end user to decide the extent of fit for his requirements.

⇒ Uncertainty Constituents in Sea-Surface Cal/Val

Absolute coordinates of the reference Cal/Val site

- Site location,
- Diverse GNSS constellations.
- GNSS Hardware, Observational Strategies, Processing,
- Ground stability of the Cal/Val site,
- Reference frames for site positioning,
- Earth tides,
- Time Reference System.

Water Level Determination at Cal/Val site

- Site location,
- · Conditions and Settings,
- Tide gauges,
- Local reference surfaces,
- Measuring strategies, estimation, data storage.

Control ties & ground monitoring at Cal/Val site

- Geodetic Control ties,
- Ground monitoring.

Geoid and MDT Models at Cal/Val site **Geophysical Parameters**

- Sea State Bias,
- Significant Wave Height,
- Wind Speed.

Atmospheric Delays in altimetry signals

- Ionosphere,
- Troposphere.

Unaccounted effects.

Uncertainty Constituents in Transponder Cal/Val

Control ties & ground monitoring

- Geodetic Control ties,
- Ground monitoring.

Time Reference for the Transponder

- Absolute time reference,
- Hardware Internal delay.

Data Processing Strategies

- Satellite Precise orbits,
- Satellite orientation in space,
- Initial time reference of chirp, etc.

Unaccounted effects

Transponder Cal/Val site

- Conditions and Settings,
- · Hardware used,
- Local reference surfaces,
- Atmospheric delays,
- Measuring strategies, estimation.

Absolute coordinates of the reference Cal/Val site

- Site location,
- Diverse GNSS constellations,
- GNSS Hardware, Observational Strategies, Processing,
- Ground stability of the Cal/Val site,
- Reference frames for site positioning,
- Earth tides,
- Time Reference System.

How to achieve FRM4ALT

Measurement conformity:

Before carrying on Cal/Val, inspect for:

- Gross errors,
- Stochastic and Deterministic structures,
- Irregularities, Invalidity of models,
- Symmetry, Serial correlation,

Decision Making Standards:

- Select true expression of parameter for "uncertainty",
- Identify measurement mechanism based on fundamental reference standards, i.e., speed of light, absolute time, etc.,
- Assess uncertainty on observation models, error distributions, propagation laws, ...
- Apply diverse sensors & tools for expressing uncertainty which are:
 - Complete: Represent all diversities & nuances in Cal/Val,
 - Efficient: Small variance,
 - **Reliable**: No matter what the error distribution, and
 - Stable: Same results on the same Cal/Val site.

Uncertainty Reporting:

• Determine uncertainty by integration of each weighted contribution, with its sensitivity.

